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A Superelement Component Dynamic Synthesis Method

M. L. Soni

A method is presented for coupling a broad class of component
dynamic models in the manner of direct stiffness assembly and
is implemented in a general matrix manipulation program.

INTRODUCTION

A number of methods have been developed in the past to accomplish the basic
objectives of the method. These methods are surveyed in detail in [1]. Each of
these methods are characterized by the way the component dynamics is input and
coupled to adjacent components. Hurty [2,3] proposed that the connect degrees of
freedom (DOF) of a component were fixed or had a zero displacement. He then
partitioned the modes of the structure into rigid body modes, constraint modes, and
normal modes. Craig and Bampton [4] proposed a simplification of Hurty's fixed
interface method by dividing component modes into only two groups: constraint modes
and normal modes. Bamford [5] added attachment modes to improve the convergence of
the method.

Goldman [6] developed the free interface method, employing only rigid body
modes and free-free normal modes in camponent dynamic representation. This
technique eliminates the computation of static constraint modes, but their advantage
is negated by the poor accuracy of the method. Hou [7] presented a variation of
Goldman's free-interface method in which no distinction is made between rigid body
modes and free-free normal modes. Gladwell [8] developed "branch mode analysis" by
combining free interface and fixed interface methods to reduce the order of the
stiffness and mass matrices for individual substructures. The reduction procedure
requires the knowledge of topological arrangement. and dynamics of all the components
in the model. 1In order to account for adjacent camponents Benfield and Hruda [9]

introduced inertia and stiffness loading of component interfaces. The use of loaded
interface modes is shown to have superior convergence characterisics.

MacNeal [10] introduced the use of hybrid modes and inertia relief modes for
canponent mode synthesis. Hybrid modes are substructure normal modes computed with
a combination of fixed and free boundary conditions. 1Inertia relief attachment
modes are attachment modes for camponents with rigid body freedoms. MacNeal also
included residual inertia and flexibility to approximate the static contribution of
the truncated higher order modes of a camponent. Rubin [11] extended the residual
flexibility approach for free interface method by introducing higher order
corrections to account for the truncated modes. Klosterman [12] more fully
developed the combined experimental and analytical method introduced by MacNeal.
Hintz [13] discussed the implications of truncating various mode sets and developed
guidelines for retaining accuracy with a reduced size model.
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Recent research has centered on the camparision of the various methods. Baker
[14], for example, compares the constrained and free-free approach using
experimental techniques and also investigates using mass additive techniques and
measured rotational DOF [15]. This investigation was motivated by a need to find
the best method for rigidly connected flexible structures. 1In this connection, the
constrained method produced the best result. Klosterman [16] has shown the free-
free method to be accurate for relatively stiff structures connected with flexible
elements. This supports Rubin's conclusion [11] that the free-free method is at
least as accurate when residual effects are accounted for. These conclusions are
intuitive because the type of boundary condition imposed in the analysis that best
represents the boundary of the assembled structure provides the best accuracy in the
modal synthesis.

Meirovitch and Hale [16] have developed a generalized synthesis procedure by
broadening the definition of the admissible functions proposed by Hurty [1]. This
technique is applicable to both continuous and discrete structural models. The
geametric compatibility conditions at connection interfaces are approximately
enforced by the method of weighted residuals.

The method due to Klosterman [12] has been implemented in an interactive
computer code SYSTAN [17] and that due to Herting [18] is available in NASTRAN. The
latter is the most general of the modal synthesis techniques. It allows retention
of an arbitrary set of component normal modes, inertia relief modes, and all
geometric coordinates at connection boundaries. Both the fixed-interface method of
Craig and Bampton, and the MacNeal's residual flexibility method, are special cases
of the general method. Other analyses presented in the literature based on modal
synthesis techniques are not incorporated into general structural analysis codes.

It is desirable to have a synthesis method to couple different types of
component dynamic models in a setting such as that of the finite element method so
as to be able to realize the best advantages of both the camponent synthesis methods
and the convenience and generality of the finite element method. The need for a
such a capability arises when different types of dynamic models are used to
represent the various components of a structure. This variance is dictated by the
need to improve accuracy of component dynamic representation, availability of a
certain kind of data, etc. Herting's work [18] meets same of these objectives. The
procedure presented herein permits a broader class of component models in the manner
of direct stiffness finite element assembly and can be implemented in a general
matrix manipulation progranm.

A principal feature of the work developed here is the component dynamic model
reduction procedure that leads to an exact and numerically stable synthesis. 1In
order to affect component coupling, neither the specification of external coupling
springs nor an user-specified selection of independent coordinate is required.
Existing synthesis procedures suffer from these drawbacks. Camponent dynamic models
considered include free-free normal modes with or without interface loading, up to
second order stiffness and inertia connections accounting for the effect of modal
truncation, fixed interface modes, and also the physical coordinate canponents. The
model reduction procedure involves interior boundary coordinate transformations
which explicitly retain connection interface displacement coordinates in the reduced
component dynamic representations. Interior coordinates may include physical,
modal, or any admissible coordinates. Camponents in this reduced form are termed
"superelement" because they are a generalization of the conventional finite elements
of structural mechanics. The problem of camponent dynamic synthesis is then reduced
to the assembly of the superelement. The direct stiffness approach and all
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subsequent processing operations of the finite element method are then applicable.
The formulation, implementation and verification aspects of the superelement
component dynamic synthesis method are presented in the following sections.

SUPERELEMENT MODEL REDUCTION

The procedures for reducing component dynamic models to a form involving
physical DOFs of the connection interface nodes plus some additional DOFs related to
the interior nodes are derived in the following. The component dynamic models in
this reduced form possess a structure similar to that of the displacement finite
element method and are therefore termed superelements. Four types of component
dynamic models are considered: (1) finite element model; (2) fixed interface modal
model with static constraint modes; (3) free interface modal model with residual
flexibility attachment modes; and (4) free interface model with normal modes. The
last type may also include any general admissible shape vectors and corresponding
dynamic matrices as long as certain requirements for matrix partitioning and
invertibility are satisfied. A system may involve any combination of the above
types of component dynamics model since the models are reduced to a cammon form
before assembly.

The finite element and the constrained interface modal models naturally
contains the connection interface DOFS and are already in the required superelement
form. Constrained interface modal model based superelement synthesis is treated in
[19]. The free interface modal model with residual flexibility attachment modes is
reduced to the superelement as follows. Expressing component displacements X in
partitioned form can be witten as

o S0 9k
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where ¢ and G are respectively the normal mode and residual flexibility attachment
mode matrices, 9k and_gB are the associated generalized coordinates, and the

subscripts B and O refer to the boundary and other DOFs. To obtain the superelement
reduction transformation, following Martinez [20] solve the lower partition of Eq.
(1) for 9z- Thus,
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substituting the above in Eq. (1) leads to the superelement form associated with the
residual flexibility attachment model:
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The generalized coordinates gy are now the participation factors of the modified
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modes (QKO GOB QBB QKB)' The internal partitions of the modified normal modes are
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in effect free interface normal mode partitions minus a set of constraint modes
internal partitions and therefore represent modes constrained at boundary degrees of
freedom. The superelement equations of motion are obtained by transforming the
canponent modal equation of motion as
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X5
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where JBB =G and QKK are generalized mass and stiffness

~1
Cpp Hpp Cpp raNd My
matrices respectively, QBB and EBB are the generalized stiffness and mass

associated with the residual flexibility attachment modes. The modification of the
component generalized mass and stiffness matrices by the contributions from the
residual flexibility of the deleted modes is clearly seen in the above equation.

In the event only a truncated set of free interface normal modes is used to
represent component displacements, the superelement reduction is obtained fram a
partial inversion of the modal matrix as described in the following. Consider the
free interface normal mode transformation

% )
B K (5)
X3 s

where QKO and $KB are (noxmK) and (anmK)size partitions of the component modal
matrix corresponding to the interior and boundary degrees of freedom 50 and ZB’
respectively. Consider the lower portion of Eq. (5)

(6)

and partition b into a nonsingular invertible square matrix bR and remainder
Thus,

% - [$KB1 : i’KBz] 9K1! (7
o)

which requires that the number of kept modes be greater than the number of boundary
degrees of freedom. Solving the above equation for Q4 gives

Sxpo-
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and
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the generalized coor*dinates_gK2 are called reduced modal coordinates since they are

associated with modified modes as seen in the above equation. Cambining transform
Egs. (6) and (9), a net transformation fram physical coordinates X to free interface
normal mode superelement coordinates can be written as
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where 9KO1 and QKOZ are partitions of QKO created using the partitioning information

generated in Eq. (8). Analogous to the Ritz transformation for constrained
interface modal models, and the transfomation of Eq. (4) for residual flexibility
model modal, the left and right partitions of the transformation of Eq. (10) may be
interpreted as expressing modal matrices of modified normal modes and boundary
constraint modes, respectively. The component equations of motion in superelement
coordinates (92, XB) can be obtained using the transform of Eq. (11) as

Yoo Yos o Fﬁoo K| [9%2|
T ! T rf b-r1t (12)
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using physical coordinate component model, or
Y1 Ygro %2 | £ K12 %2
T T T T
T s I T =T ¢ £ (12)
Moo Yg2o X5 o1 Kqo2 X5

from modal coordinate model. In the above the generalized mass and stiffness
matrices are used to include the case where the columns of the modal matrix in Eq.
(12) are not orthogonal. (Mass and stiffness loaded camponent modes are
nonorthogonal with respect to the original unloaded mass and stiffness matrices, for
example.). Further, it is to be emphasized again that the reduced modal
representation given in Eqs. (9) through (12) is obtainable from any given free
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interface "modal" representation provided the partitioning conditions leading to
Eq. (8) can be met. The columns of modal matrix in Eq. (5) need not be nomal
modes. The only necessary condition is that they be linearly independent, adequate
in number, and be from a complete set, i.e., a linear combination of them should be
capable of representing the deformation shapes of the component undergoing motion
within the canpound of the built-up system.

SUPERELEMENT SYNTHESIS

The reduction procedures described in the preceding section yield camponent
models with a common characteristic: the boundary degrees of freedom are explicitly
retained and the internal degrees of freedom are transformed to reduced generalized
coordinates. The equations of motion of a superelement component can be expressed
as

m(a) (a)y( (o) C_(OL) (a) (a) K(a) (a) (a) 0
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or

E(a).é(a) . g(a?g(a) . E(a).E - E(ot)

Each component substructure of a given built-up system can be expressed in the above
format. Analogous to the matrix equation of a displacement based finite element
model, the generalized coordinates may be interpreted as internal DOFs. Assuming
that the global structure as partitioned into N camponents, the assembled global
matrices M, C, K relating the global displacement vector X and the global force
vector F can now be synthesized by the direct stiffness approach fram the component
matrices of Eq. (13). The direct stiffness approach postulates equal nodal
displacement and nodal equilibrium of forces at the connection interfaces of
adjacent components, thus

N
(o) _ (a) (@) p(a)
KB B —B , and EB —NZ1 BB —B aw
No campatibility conditions exist among the reduced generalized coordinates g‘a) and
remain intact. The coupled system coordinate vector thus becomes
T T T
T 2 T
- tgM g o (15)
so that the global mass, damping, and stiffness matrices are given by
N T N T N T
M= oI é(a) b;l(oL)B(oL) L C= 1 é(a) c=:(oz)s(oz) K= I g(cx) K(a)s(a) (16)
a=1 a=1 a=1 -
where B( o) is the portj |n of the component to global transformation matrix 8
corresponding to the o~ component. "
(o) A
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- . 0 o . . .

Y being the vector of uncoupled superelement coordinates.
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and E(a) representing the compatibility conditions for the degrees of freedom at the
boundaries of the component a.

The built-up system mass, damping, and stiffness matrices are of the following

form.
(1) (1]
WS 33 W
A - =49 : 4 (19)
(N (W)
200 &B
L sym. 2pp

where the coefficients agq) are the mass, damping, or stiffness coefficients
matrices give?agn Eq. (1&9, and A is the corresponding global matrix. The diagonal
submatrices a in Eq. (19) correspond to the reduced generalized coordinates of
the camponenﬁgqand are uncoupled fram other components.

N T
_ ()" _(a) ,(a)
2 = * B 2pp fp
o=1
The submatrices are symmetric and in general fully populated. The system governing
equations can be expressed as

M,.)S+(=:X_+

=

X-f (20)

which itself is in a superelement form since the system basis coordinate X contains
the boundary degrees of freedom explicitly. This is particularly useful fram the
standpoint of coupling the system of Eq. (20) to a higher level superelement. The
recovery of component displacements fram the system displacement vector X is

simply a back substitution and transformation process.

NUMERICAL EXAMPLE AND CONCLUSIONS

The above formulation is implmented as a pre~ and post-processor to a general
matrix manipulation camputer program. The following presents a sample synthesis
problem involving free interface and residual flexibility modal models solved using
the developed software to demonstrate its working. In Figure 1 the camponent A
represents a lumped parameter model of an aircraft, while that labeled B represents
a model of a store to be attached at the tip of the wing. The types of dynamic
models employed for each component are as follows. For Aircraft: (1) free interface
normal modes followed by a transformation to superelement coordinates, and (2) Free
interface normal modes plus a residual flexibility attachment mode followed by a
transformation to superelement coordinates. And for the Store: (1) free interface
normal modes followed by superelement coordinate transformation, and (2) physical
coordinate model. For camnparison purposes the problem is also solved using existing
MacNeal Method and Rubin Method of synthesis. The results of the synthesis are
shown in Table 1. The exact results are obtained by solving the eigenproblem of the
built-up system without partitioning. The superelement synthesis using complete
mode sets of the coamponents leads to exact system synthesis as expected.
Superelement method using severely truncated component mode set along with residual
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flexibility attachment modes predicts system frequency with an accuracy better than
that of the MacNeal method and equal to that of the Rubin's second order method.

It must be noted that in this study different types of component dynamics
models are synthesized by virtue of the superelement formulation, and that the
accuracy of system synthesis is entirely governed by the type of component dynamic
models and not by the coupling procedure.

TABLE 1 DIRECT AND SYNTHESIZED SYSTEM NATURAL FREQUENCIES (RADS./SEC)
MODE EXACT SUPERELEMENT MACNEAL RUBIN
NO. FREQ. SYNTHESIS METHOD METHOD
A B (B) (B)
1 0. 0. 0. 0. 0.
2 52.417 52.417 52.4118 52.419 52.418
3 69.348 69.348 69.829 69.886 69. 829
L 72.818 72.818 291.697 504.67 291.697
5 418.029 418.03
6 775.678 775.678
A: (1 Rigid body + 4 elastic) modes of the aircraft

(1 Rigid body + 1 elastic + 1 residual flexibility) mode of the aircraft

L HHGH OHHT

Mia kia Moa Koa Mzp Kgn Mgp Ky Mgy Mg kg Mo

m,, = =0.1 , m,, =36 , = 100 , m,, = 400

A 2 6538000 . k2A < 720,000 KA - 100,000 . k' - 50,000
0.2 met < 0.4 k>R - 2,000 HA

1S : 728 ’ ’ 18 i

Fig. 1 Lumped Parameter Aircraft-Store System
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